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Abstract: In fuzzy graph theory, strong arcs have separate importance. Assign different colors to the end nodes of strong 

arcs in the fuzzy graph is strong coloring. Strong coloring plays an important role in solving real-life problems that involve 

networks. In this work, we introduce the new concept, called strong fuzzy chromatic polynomial (SFCP) of a fuzzy graph 

based on strong coloring. The SFCP of a fuzzy graph counts the number of k-strong colorings of a fuzzy graph with k colors. 

The existing methods for determining the chromatic polynomial of the crisp graph are used to obtain SFCP of a fuzzy graph. 

We establish the necessary and sufficient condition for SFCP of a fuzzy graph to be the chromatic polynomial of its underlying 

crisp graph. Further, we study SFCP of some fuzzy graph structures, namely strong fuzzy graphs, complete fuzzy graphs, fuzzy 

cycles, and fuzzy trees. Besides, we obtain relations between SFCP and fuzzy chromatic polynomial of strong fuzzy graphs, 

complete fuzzy graphs, and fuzzy cycles. Finally, we present dual applications of the proposed work in the traffic flow problem. 

Once SFCP of a fuzzy graph is obtained, the proposed approach is simple enough and shortcut technique to solve strong 

coloring problems without using coloring algorithms. 

Keywords: Fuzzy Graph, Strong Coloring, Strong Fuzzy Chromatic Polynomial, Strong Fuzzy Graph,  

Complete Fuzzy Graph, Fuzzy Cycle, Fuzzy Tree, Traffic Flow Problems 

 

1. Introduction 

Fuzzy graph theory is a dominant concept for modeling 

and solving combinatorial optimization problems which 

come from different fields. On the basis of Zadeh’s fuzzy sets 

[1], the theory of fuzzy graph was narrated by Rosenfeld [2]. 

The author has studied the fuzzy analogs of several basic 

graph theoretical concepts. Bhutani [3] introduced the 

concept of automorphisms of fuzzy graphs and defined a 

complete fuzzy graph. Mordeson and Nair [4] have 

established the necessary and sufficient condition for a fuzzy 

graph which is cycle to be the fuzzy cycle. The fuzzy tree 

was characterized by Sunitha and Vijayakumar [5] using its 

unique maximum spanning tree. Strong arcs in a fuzzy graph 

were introduced by Bhutani and Rosenfeld [6]. The authors 

have also studied strong arcs in a fuzzy tree. Classifications 

of arcs in a fuzzy graph are very helpful to understand the 

entire structure of the fuzzy graph. Based on the strength of 

an arc, Mathew and Sunitha [7] have classified arcs in the 

fuzzy graph. In [8], the authors introduced the strongest 

strong cycle in fuzzy graphs. Lately, many researchers have 

actively worked on advancing fuzzy graphs [9-13]. Besides, 

they have studied fuzzy graph structures including strong, 

complete, regular fuzzy graph structures [14-16]. More 

recently, various types of fuzzy graphs such as bipolar fuzzy 

graphs [17], m-polar fuzzy graphs [18] Pythagorean fuzzy 

graphs [19], Dombi fuzzy graphs [20], Pythagorean dombi 

fuzzy graphs [21], Picture fuzzy graphs [22] have studied by 

different scholars. Moreover, several researchers published 

their work on applications of types of fuzzy graphs [18, 23-

26] and index of fuzzy graphs [27, 28]. 

In fuzzy graph theory, coloring plays a paramount role in 

solving optimization problems. Munoz et al. [29] introduced 

the idea of coloring fuzzy graphs. After that, Eslahchi and 
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Onagh [30] have defined the fuzzy chromatic number of a 

fuzzy graph. Several authors including Kishore and Sunitha 

[31] and Samanta et al. [32], Mahapatra et al. [33] have 

worked on fuzzy coloring. In [34], Kishore and Sunitha have 

initiated the concept of the strong coloring of fuzzy graphs 

based on strong arcs. The authors defined the strong 

chromatic number of a fuzzy graph. Recently, Rosyida et al. 

[35] introduced a fuzzy chromatic number in the union of 

fuzzy graphs. Mamo and Srinivasa Rao [36] introduced the 

concept of the fuzzy chromatic polynomial of a fuzzy graph 

based on �-cuts.  

The concept of strong coloring has a significant role in 

addressing real-life problems that involve networks. The core 

contributions of this research article are as follows. 

i. As far as we know, there exists no research work on 

SFCP until now. Hence, in this article, we present the 

definition of SFCP of a fuzzy graph based on strong 

coloring. 

ii. We establish the necessary and sufficient condition for 

SFCP of a fuzzy graph and chromatic polynomial of its 

underlying crisp graph is equivalent. 

iii. We study the SFCP of some structures of fuzzy graphs 

such as strong fuzzy graphs, complete fuzzy graphs, 

fuzzy cycles, and fuzzy trees. 

iv. We obtain relations between SFCP and fuzzy chromatic 

polynomial of strong fuzzy graphs, complete fuzzy 

graphs, and fuzzy cycles. 

v. We present the definition of a strong fuzzy chromatic 

number of a fuzzy graph in terms of SFCP. 

vi. Dual applications of SFCP in traffic flow problems are 

described in this article. Also, we suggest SFCP 

approach to solve strong coloring problems. 

2. Preliminaries 

In this section, we reviewed some basic definitions and 

concepts on fuzzy graphs, strong arcs and strong coloring of 

fuzzy graphs, which are important for present work. The 

following basic definitions and related concepts are taken 

from [3, 7, 34, 36-38]. 
Definition 1. A fuzzy graph � = (�, �, �)  is a triple 

consisting of a nonempty set V together with a pair of 

functions �: � → [0, 1] and �: � � � → [0, 1] such that for all 

�, � ∈ �, �(�, �) ≤ �(�) ∧ �(�).  Here, the fuzzy set � is 

called the fuzzy vertex set of G and � the fuzzy edge set of G. 

We consider a fuzzy graph � is simple and undirected. For 

notational convenience, we use simply �  or � = (�, �)  to 

represent the fuzzy graph � = (�, �, �). 

Definition 2. The fuzzy graph � = (�, �, �) is called a fuzz 

subgraph of � = (�, �, �)  induced by �  if  � ⊆ �, �(�) =

�(�) for all � ∈ � and �(�, �) = �(�, �) for all �, � ∈ �. 
Definition 3. We denote the underlying crisp graph of a 

fuzzy graph �  by �∗ = (�∗, �∗) where �∗ = {� ∈ �: �(�) >

0} and �∗ = {(�, !) ∈ � � �: �(�, !) > 0}. 

Definition 4. The level set of fuzzy set �  is defined as 

"# = {�: �(�) = � for some � ∈ �∗} and the level set of � 

is defined as "* = {�: �(�, !) = � for some (�, !) ∈ �∗} . 

The fundamental set (or level set) of the fuzzy graph 

� = (�, �, �) is defined as " = "# ∪ "*. 

Definition 5. For each � ∈ , = " ∪ {0}, �-  denotes the �-

cut of the fuzzy graph G which is the crisp graph �- =

(�- , �-)  where �- = {� ∈ �/�(�) ≥ �}  and �- = {(�, !) ∈

� ×  �/�(�, !) ≥ �}. 

Definition 6. A fuzzy graph � is said to be strong fuzzy 

graph if �(�, !) = �(�) ∧ �(!) for all (�, !) in �∗. 

Definition 7. A complete fuzzy graph is a fuzzy graph 

� = (�, �) such that �(�, !) = �(�) ∧ �(!) for all �, ! ∈ �. 

Definition 8. Let � =  (�, �) be a fuzzy graph. Then 

(i) G is called a cycle if �∗ = (�∗, �∗) is a cycle. 

(ii) G is called a fuzzy cycle if �∗ = (�∗, �∗) is a cycle and 

∄ unique (�, !) ∈ �∗ such that  

�(�, !)  = ∧ {�(�, !) | (�, !) ∈ �∗ } 

Definition 9. Let � =  (�, �) be a fuzzy graph. Then 

(i) � is called a tree if �∗ = (�∗, �∗) is a tree. 

(ii) �  is called a fuzzy tree if � has a fuzzy spanning 

subgraph 3 =  (�, 4) , which is a tree, such that for all 

(�, !)  ∈ �∗\4∗, �(�, !)  < 47(�, !). That is, there exists a 

path in (�, 4) between � and ! whose strength is greater than 

�(�, !). 

Definition 10. A path� in a fuzzy graph � = (�, �)  is a 

sequence of distinct vertices �8, �9, … , �;  (except possibly 

�8 and �;) such that �(�<=9, �<) > 0, > = 1, 2, … , @. Here n is 

called the length of the path. 

Definition 11. If �8 = �;,  and @ ≥ 3  then �  is called a 

cycle and � is called a fuzzy cycle, if it contains more than 

one weakest arc. 

Definition 12. The strength of �  is defined to be 

B �(�<=9, �<);
<C9 . In words, the strength of a path is defined as 

the degree of membership of the weakest arc in �. We denote 

the strength of a path P by D(�). 

Definition 13. The strength of connectedness between two 

vertices � and ! is defined as the maximum of the strengths 

of all paths between �and !and is denoted by EFGGH(�, !) 

or �7(�, !). The strongest path joining any two vertices �, ! 

has strength �7(�, !). 

Definition 14. A fuzzy graph � = (�, �) is connected if for 

every �, ! in �∗, �7(�, !) > 0. 

Definition 15. An arc (�, !)  in � is called � -strong if 

�(�, !) > EFGGH=(I,J)(�, !). 

Definition 16. An arc (�, !)  in � is called K -strong if 

�(�, !) = EFGGH=(I,J)(�, !). 

Definition 17. An arc (�, !)  in �  is called L -arc if 

�(�, !) < EFGGH=(I,J)(�, !). 

Here, EFGGH=(I,J)(�, !) is the strength of connectedness 

between �  and !  in a fuzzy graph obtained from �  by 

deleting the arc (�, !). 

Here, a strong arc is either �-strong or K-strong. Also, a L-

arc (�, !)  is called a L∗ -arc if �(�, !) > �(�, �)  where 

�(�, �) is the weakest arc of �. 

Definition 18. Consider a fuzzy graph � = (�, �, �). The 

coloring E ∶ � (�)  → ℕ  (where ℕ  is the set of all positive 

integers) such that E(�)  ≠ E(!) if (�, !) is a strong arc (�-

strong and K-strong) in � is called strong coloring. 

Definition 19. A fuzzy graph �  is k-strong colorable if 
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there exists a strong coloring of � from a set of P colors. 

Definition 20. The minimum number P for which � is P -

strong colorable is called the strong chromatic number of 

�denoted by QR(�). 
Definition 21. For a fuzzy graph �, the fuzzy chromatic 

polynomial of � is denoted by �-
S��, P	 and defined as the 

chromatic polynomial of its crisp graphs �- , for � � ,. 

That is, �-
S��, P	 �  ���- , P	, T� � ,. 

3. Strong Fuzzy Chromatic Polynomial 

of a Fuzzy Graph 

In the sense of arcs, chromatic polynomials of crisp graphs 

are always strong chromatic polynomials. Since in crisp 

graph theory, all the arcs are strong by nature. But, in fuzzy 

graph theory, arcs are different and have separate significance. 

In this section, we introduce the new concept, strong 

chromatic polynomial in a fuzzy graph, called strong fuzzy 

chromatic polynomial (SFCP). Also, we define a strong fuzzy 

chromatic polynomial of a fuzzy graph based on strong 

coloring. 

A strong fuzzy chromatic polynomial counts the number of 

strong coloring on the vertices of a fuzzy graph and is 

defined as follows. 

Definition 22. Let �  be a fuzzy graph with a positive 

integer P, the number of distinct P-strong colorings of �  is 

called strong fuzzy chromatic polynomial (SFCP) of �. It is 

denoted by �R
S��, P	. 

Example 1. Consider the fuzzy graph � given in Figure 1. 

 

Figure 1. A fuzzy graph �. 

Here, ���, !	 � 0.7 , ���, V	 � 0.6  and ��!, V	 � 0.5. 
Also, EFGGH=�I,J	��, !	  �  0.5, EFGGH=�I,Y	��, V	  �  0.5 

and EFGGH=�J,Y	�!, V	  �  0.6. 

In Figure 1, we found that arc ��, !	 is �-strong since 

��, !	 � 0.7 � EFGGH=�I,J	��, !	 � 0.5 

Similarly, arc ��, V	 is �-strong since 

��, V	 � 0.6 � EFGGH=�I,Y	��, V	 � 0.5 

But arc �!, V	 is L-arc since  

�!, V	 � 0.5 6 EFGGH=�J,Y	�!, V	 � 0.6 

Here, strong coloring gives P color for � and P Z 1 color 

for both ! and V (See Figure 2). 

 

Figure 2. Calculating strong fuzzy chromatic polynomial of �. 

Hence, the SFCP of � is P�P Z 1	�P Z 1	 . That is, 

�R
S��, P	 � P�P Z 1	[. 
Theorem 1 gives the necessary and sufficient condition for 

SFCP of � and chromatic polynomial of �� are equivalent. 

Theorem 1. Let �  be a fuzzy graph. Then �R
S��, P	 �

����, P	 if and only if all the arcs in � are strong. 

Proof. Let � � ��, �	 be a fuzzy graph and �� � ���, ��	 

be its underlying crisp graph. Let us first prove if �R
S��, P	 �

����, P	 then all the arcs in � are strong by contrapositive, 

suppose that some of the arcs in � are not strong. This shows 

that there exists at least one arc ��, !	  in ��  such that 

���, !	 O EFGGH��, !	. Then by Proposition 2 of [6], the 

arc ��, !	  is not strong. This implies that strong coloring 

gives the same color to the end nodes of the arc ��, !	 in �. 

Thus, 

�R
S��, P	 O ����, P	. 

Conversely, suppose all the arcs in � are strong. Since all 

the arcs are strong, then by Proposition 2 of [6], we have 

���, !	 � EFGGH��, !	  for all arcs ��, !	  in ��  and strong 

coloring gives different colors to the end vertices of all arcs 

in �  which is analogous to the coloring of the underlying 

crisp graph ��. Hence, 

�R
S��, P	 � ����, P	 

Theorem 2 shows us how to determine the strong fuzzy 

chromatic polynomial of a fuzzy graph in which some of the 

arcs are not strong. 

Theorem 2. Let � be a fuzzy graph in which some of its 

arcs are not strong. Then �R
S��, P	 � ����, P	, where � be a 

fuzzy subgraph obtained from � by deleting L-arcs and �� be 

its underlying crisp graph. 

Proof. Let �  be a fuzzy graph. Suppose �  is a fuzzy 

subgraph obtained from � by deleting L -narcs. 

Thus, � contains only strong arcs. Therefore, by Theorem 

1 we have,  

�R
S��, P	 � ����, P	                           (1) 

Since � is a fuzzy subgraph of �, all the arcs of � are the 

only strong arcs of �. This implies that 

�R
S��, P	 � �R

S��, P	                           (2) 

Therefore, from equation (1) and (2), we get, 

�R
S��, P	 � ����, P	 
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4. Strong Fuzzy Chromatic Polynomial 

of Some Fuzzy Graph Structures 

In the section, we study the SFCP of some fuzzy graph 

structures and their relations with the fuzzy chromatic 

polynomial. 

4.1. Strong Fuzzy Graphs 

In this subsection, we study the SFCP of strong fuzzy 

graphs and the relation between SFCP and fuzzy chromatic 

polynomial of a strong fuzzy graph. 

Theorem 3. Let �  is a strong fuzzy graph and �∗  be its 

underlying crisp graph. Then �R
S

(�, P	 � ����, P	. 

Proof. Suppose �  is a strong fuzzy graph and ��  is its 

underlying crisp graph. Since � is a strong fuzzy graph, then 

by Theorem 4.1 of [36], all the arcs in � are strong. Then, by 

Theorem 1, the result holds. 

Remark 1. The Converse of Theorem 3 does not hold 

generally. 

Example 2. Let us consider the fuzzy graph �, shown in 

Figure 3. 

 

Figure 3. A fuzzy graph �. 

In �, the arc ��, !	 is �- strong and all the remaining arcs 

are K -strong. So, all the arcs in �  are strong. Thus, by 

Theorem 1 we have �R
S��, P	 � ����, P	. But � is not strong 

fuzzy graph since ��!, V	 O \>@���!	, ��V	 , for �!, V	 �
��. 

Remark 2. If all the arcs in a fuzzy graph�are strong, then 

� need not be a strong fuzzy graph (See Figure 3). 

The relation between SFCP and fuzzy chromatic 

polynomial of a strong fuzzy graph is established below. 

Theorem 4. Let G be a strong fuzzy graph, then ^� � " 

such that �R
S��, P	 � �-

S��, P	. 
Proof. Let �  be a strong fuzzy graph. Let ��  be the 

underlying crisp graph of �. Let " be a level set of �. If 

we take � � "  and � � min �"	  and since �  is a fuzzy 

graph. 

Then by Theorem 40 of [36],  

�-
S��, P	 � ����, P	                           (3) 

Since � is a strong fuzzy graph, then by Theorem 2, we 

have 

�R
S��, P	 � ����, P	                             (4) 

Therefore, from equation (3) and (4), the result holds 

immediately. 

4.2. Complete Fuzzy Graphs 

In this subsection, the SFCP of complete fuzzy graphs and 

the relation between SFCP and fuzzy chromatic polynomial 

of a complete fuzzy graph are studied. 

Theorem 5. Let �  be a complete fuzzy graph with n 

vertices. Then �R
S��, P	 � ��a; , P	,  where a; is a complete 

crisp graph with n vertices. 

Proof. Suppose � is a complete fuzzy graph with n vertices. 

Then all arcs of a complete fuzzy graph are strong by 

Proposition 3.13 of [3] and Proposition 2 of [6]. Then, by 

Theorem 1 we have �R
S��, P	 � ����, P	 and by Lemma 44 

of [36], the result holds immediately. 

Remark 3. The Converse of Theorem 5 need not be true. 

The equation �R
S��, P	 � ��a; , P	 does not imply that � is a 

complete fuzzy graph. 

Example 3. Consider the fuzzy graph � shown in Figure 4. 

 

Figure 4. A fuzzy graph �. 

In � , the arcs ��, �	  and �!, V	  are � - strong and the 

remaining arcs are K- strong. So, all the arcs in � are strong. 

Therefore, by Theorem 1, we have 

�R
S��, P	 � ����, P	                          (5) 

which is equal to ��ab, P	. But, �  is not a complete fuzzy 

graph. 

Remark 4. If all the arcs in a fuzzy graph � are strong, � is 

not necessarily a complete fuzzy graph. (See Figure 4) 

Remark 5. A complete fuzzy graph is strong whereas a 

strong fuzzy graph need not be complete. 

Remark 6. If a fuzzy graph G is strong or/and complete 

fuzzy graph, then �R
S��, P	 � ����, P	. 

The relation between SFCP and fuzzy chromatic 

polynomial of a complete fuzzy graph is established in 

Theorem 6. 

Theorem 6. If � is a complete fuzzy graph, then there exist 

� � , such that �R
S��, P	 � �-

S��, P	. 
Proof. Suppose � is a complete fuzzy graph with n vertices. 

Define , � " + �0 , where " is the level set of � . If � � 0 

and since � is a fuzzy graph, then by Theorem 39 of [36]. 

�-
S��, P	 � ��a;, P	                           (6) 

Since � is a complete fuzzy graph, by Theorem 5 we have 

�R
S��, P	 � ��a;, P	                            (7) 

Therefore, from equation (6) and (7), we get, 

�R
S��, P	 � �-

S��, P	 
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Similarly, the result holds for � = min�"	. Hence, for a 

complete fuzzy graph � , there are � � ,  such that 

�R
S��, P	 � �-

S��, P	. 
4.3. Fuzzy Cycles 

In this subsection, the SFCP of a fuzzy cycle and the 

relation between SFCP and fuzzy chromatic polynomial of a 

fuzzy cycle are discussed. 

In fuzzy cycle �, there are no L-arcs. In other words, the 

weakest arcs in G are K-strong and all the remaining arcs are 

�-strong [6]. 

Theorem 7. Let � be a fuzzy graph such that �� is a cycle. 

Then � is a fuzzy cycle if and only if �R
S��, P	 � ����, P	. 

Proof. Let �  be a fuzzy graph such that ��  is a cycle. 

Suppose � is a fuzzy cycle. Since � is a fuzzy cycle, then � 

contains only strong arcs [7]. Therefore, by Theorem 1, the 

result immediately holds. 

On the other hand, we shall prove by contrapositive of if 

�R
S��, P	 � ����, P	  then �  is a fuzzy cycle. We want to 

show �R
S��, P	 O ����, P	  whenever �  is not fuzzy cycle. 

Since � is not a fuzzy cycle, there is at least one arc ��, !	 in 

� such that ���, !	 O �7��, !	. This implies that arc (�, !	 

is not strong. Therefore, strong coloring assigns the same 

color to the end nodes of arc ��, !	 . This implies that 

�R
S��, P	 O ����, P	. Therefore, if �R

S��, P	 � ����, P	 then 

� is a fuzzy cycle. 

Here, Theorem 7 gives the necessary and sufficient 

condition for SFCP of fuzzy graph � such that �� is a cycle 

to be the chromatic polynomial of ��. 
Remark 7. Let � be a fuzzy graph with n vertices such that 

�� is a cycle. Then �� � E;, where E;is a cycle crisp graph 

with n vertices. 

Corollary 1. Let � be a fuzzy graph with @ vertices such 

that ��  is a cycle. If �  is a fuzzy cycle, then �R
S��, P	 �

��E;, P	. 

Proof. The result immediately holds from Theorem 7 and 

Remark 52 of [36]. 

The relation between SFCP and fuzzy chromatic 

polynomial of a fuzzy cycle is established below. 

Theorem 8. Let � be a fuzzy graph and �� be a cycle. If � 

is a fuzzy cycle, then there exist � � " such that �R
S��, P	 �

�-
S��, P	. 
Proof. Let �  be a fuzzy graph such that ��  is a cycle. 

Suppose � is a fuzzy cycle. Since � is a fuzzy cycle. Then by 

Theorem 7, we get 

�R
S��, P	 � ����, P	                            (8) 

Now take � � min�"	, where L is the fundamental set of 

�, by Theorem 40 of [36], we have  

 �-
S��, P	 � ����, P	                             (9) 

From equations (8) and (9), we get �R
S��, P	 � �-

S��, P	. 
Therefore, for a fuzzy cycle �, there exists � � " such that 

SFCP of a fuzzy cycle is equal to the fuzzy chromatic 

polynomial of a fuzzy cycle. 

4.4. Fuzzy Trees 

In this subsection, we discuss the SFCP of a fuzzy tree and 

a fuzzy graph � whose �� is a tree and not the tree. 

Theorem 9. Let � be a fuzzy graph such that �� is a tree. 

Then �R
S��, P	 � ����, P	. 

Proof. Let � be a fuzzy graph such that �� is a tree. � is a 

tree by Definition 9. Since �� is a tree, clearly, all the arcs of 

�  are fuzzy bridges. Then all the arcs in �  are strong by 

Proposition 2 of [6] and Theorem 4 of [5]. Therefore, the 

result holds by Theorem 1. 

Remark 7. For fuzzy graph � with n vertices such that �� 

is a tree, then �� � h; , where h;  is a tree with n vertices. 

Moreover, by Theorem 9, we have �R
S��, P	 � ��h; , P	. 

Theorem 10 gives the SFCP of a fuzzy tree is equal to the 

SFCP of its maximum spanning tree. 

Theorem 10. Let � be a fuzzy graph such that �� is not a 

tree. If � is a fuzzy tree, then �R
S��, P	 � �R

S�h, P	, where h 

is the maximum spanning the tree of �. 

Proof. Let �  be a fuzzy graph and ��  be not a tree. 

Suppose � is a fuzzy tree. Since � is a fuzzy tree, then � has 

a unique maximum spanning tree T by Theorem 10 of [5]. 

Since � is a fuzzy tree and �� is not a tree, by Theorem 5 

of [5] � consists of at least one L-arc. Then, by Proposition 4 

of [6], the strong arcs of � are arcs of h of �. This implies 

that all the arcs of h are strong. 

Hence, the strong coloring of � is exactly the same as the 

strong coloring of hof �. Hence, �R
S��, P	 � �R

S�h, P	. 
Example 4. Consider the following fuzzy tree � in Figure 

5 and its maximum spanning tree h in Figure 6. 

 

Figure 5. A fuzzy tree �. 

 
Figure 6. A maximum spanning tree h of �. 

In Figure 5, arc ��, !	  and arc ��, V	  are � -strong but 

�!, V	  is L -arc, whereas, in Figure 6, both arcs ��, !	  and 

��, V	 are �-strong which are strong arcs of a fuzzy tree � in 

Figure 5. In � and h, vertex � can be strong colorable in P 

ways and vertices ! and V can be strong colorable in P Z 1 

ways. 

Therefore, 
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�R
S

(�, P	 � P�P Z 1	�P Z 1	 � �R
S�h, P	 

Theorem 11. Let � be a fuzzy tree and h be its maximum 

spanning tree. Then �R
S��, P	 � ��h�, P	 , where h�  is the 

underlying crisp graph of h. 

Proof. Suppose �  is a fuzzy tree and h  is its maximum 

spanning tree. Since � is a fuzzy tree, then all the arcs inh 

are strong by Proposition 4 of [6]. Then by Theorem 1, we 

have 

�R
S�h, P	 � ��h�, P	                         (10) 

Where h� is the underlying crisp graph of T. 

Since � is a fuzzy tree, then by Theorem 10, we have   

�R
S��, P	 � �R

S�h, P	                          (11) 

Hence, from equation (10) and (11), we get 

�R
S��, P	 � ��h�, P	 

Remark 8. Let �  be a fuzzy tree. Then 1� � , such that 

�R
S��, P	 � �-

S��, P	. 
Example 5. Consider the fuzzy tree � in Figure 7 (a) and 

its maximum spanning tree T of � in Figure 7 (b). 

 

(a) 

 

(b) 

Figure 7. (a) A fuzzy tree G (b). A maximum spanning tree T of �. 

By Theorem 10, 

�R
S��, P	 � �R

S�h, P	 � P�P Z 1	b O �-
S��, P	 

for all � � ,. 

Theorem 12. Let � be a fuzzy graph such that �� is a cycle. 

If�is not fuzzy tree then 

�R
S��, P	 � ����, P	                              (12) 

Proof. Let � be a fuzzy graph and �� be a cycle. Suppose 

� is not a fuzzy tree. Then, by Theorem 1 of [4]. � is a fuzzy 

cycle. Since � is a fuzzy cycle, then the result immediately 

holds by Theorem 7. 

Besides counting the strong colorings on fuzzy graphs, 

SFCP can be used to get the strong fuzzy chromatic number 

of a fuzzy graph. 

The following definition tells us how to use the SFCP to 

find the least number of colors for which a fuzzy graph to be 

strong colorable. 

Definition 23. Let �  be a fuzzy graph. The number P is 

called the strong fuzzy chromatic number of �, QR
S��	  if 

there exist the smallest positive integer P such that 

�R
S��, P	 O 0. 
i.e. P � QR

S��	. 

Note that strong fuzzy chromatic polynomials are powerful 

mathematical tools. Once SFCP of a fuzzy graph is 

determined, it is a simple and shortcut method for solving 

strong coloring problems that are modeled by fuzzy graphs. 

5. Applications of Strong Fuzzy 

Chromatic Polynomial 

In this section, we discuss two applications of the strong 

fuzzy chromatic polynomial in vehicular traffic flow 

problems at road intersections. In the first application, we 

apply our proposed SFCP to find a minimum number of 

traffic light phases, in the second application to compute the 

possible number of traffic light patterns with the optimized 

phases. 

5.1. Application for Finding the Minimum Number of 

Traffic Light Phases 

In traffic flow problems, phases collect non-conflict 

movements of traffic flows at road intersections so that the 

traffic flows being safe and smooth. Phase design is the first 

step in the traffic signal designing procedure. This shows that 

phase designing is a very important step since the further 

steps are affected by it. Besides, a minimum number of 

phases are very helpful in reducing the waiting time of 

vehicles and fuel consumption. In this subsection, we apply 

the proposed SFCP to find the minimum number of traffic 

light phases at a road intersection. 

Now, we demonstrate the first application of SFCP theory 

to traffic flow problems with the help of Example 6. 

Example 6. Consider the traffic flow problem of a city in 

Figure 8. In this problem, we consider a four-legged 

intersection through four traffic flows. Each flow can move 

straight, turn right and turn left at the road intersection. We 

assume that the number of vehicles at each lane is not equal. 

Suppose that the traffic volumes of flow 1, flow 2, flow 3 and 
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flow 4 are High (0.9), Low (0.2), Medium (0.5) and Low 

(0.2), respectively. 

 

Figure 8. A traffic flow problem of a city at an intersection. 

For ensuring safe crossing at road intersections, conflict 

movements can be managed by using traffic control phases. 

Now to apply the proposed SFCP method for finding the 

optimized number of phases, first, we represent the traffic 

flows (flows 1, 2, 3 & 4) in Figure 8 by nodes on the graph. 

Next, connect the pair of flows by an arc if there is a 

conflicting movement between them. Since the traffic 

volume of each flow at the roads is not equal and the 

probability of occurrence of an accident between a pair of 

conflict flows are also different. To handle these uncertainties 

and fuzziness which occurred in the problem, we model the 

traffic flow problem by a fuzzy graph � = (�, �, �	, where 

1. � � �1, 2, 3, 4  is fuzzy vertex set, 

2. �: � � �0, 1� is the membership values of the nodes in 

V and it is characterized by the volume of traffic flows, 

3. i.e. ��1	 � 0.9, ��2	 � 0.2, ��3	 � 0.5 & ��4	 � 0.2, 
4. ��>, l	 is the membership values of the arcs in �� and 

denote the probability of occurrence of accidents when 

flows >  and l are moving simultaneously at the 

intersection. 

Depending on the possibility of an accident, we consider 

two cases to model the problem. 

Case 1: When ��>, l	 � \>@���>	, ��l	  mno �>, l	 � �� 

The fuzzy graph model � for the traffic flow problem in 

Figure 8 base on Case 1 is shown in Figure 9. 

 

Figure 9. The fuzzy graph model � for the traffic flow problem in Figure 8 

based on Case 1. 

Case 2: When ��>, l	 p \>@���>	, ��l	  for >  and l  with 

low traffic (where “p” represents much less than). 

Suppose ��2, 4	 � q p 0.2. So, the fuzzy graph model �9 

for the traffic flow problem in Figure 8 based on Case 2, is 

shown in Figure 10. 

 

Figure 10. The fuzzy graph model �9 for the traffic flow problem in Figure 8 

based on Case 2. 

Next, identify the types of arcs in the fuzzy graph models 

� and �9, since the fuzzy graph model � shown in Figure 9 

is a complete fuzzy graph, by Proposition 3.13 of [3] and 

Proposition 2 of [6], all arcs of a complete fuzzy graph are 

strong. 

On the other hand, by routine computation, for the fuzzy 

graph model �9 shown in Figure 10, we found that arc (1, 3) 

is �-strong, arcs (1, 2), (1, 4), (2, 3) and (3, 4) are K-strong 

and arc (2, 4) is L-arc. Hence, arcs (1, 2), (1, 3), (1, 4), (2, 3) 

and (3, 4) are the only strong arcs in �9. 

Now, determine the SFCP for the fuzzy graph model � and 

�9 based on their arcs. Since � is a complete fuzzy graph, by 

Theorem 5, �R
S��, P	 � ��ab, P	, where ab  is the complete 

crisp graph. 

But,  

��ab, P	 � P�P Z 1	�P Z 2	�P Z 3	            (13) 

Therefore, 

�R
S��, P	 � P�P Z 1	�P Z 2	�P Z 3	           (14) 

Analogously, since all the arcs in �9 are not strong (b/c arc 

(2, 4) is L-arc). Suppose � is a fuzzy subgraph obtained from 

the fuzzy graph �9  by deleting L -arc. Explicitly, � � �9 Z
�2, 4	 is given in Figure 11. 

Therefore, by Theorem 2, �R
S��9, P	 � ����, P	 where �� 

is the underlying crisp graph of � is shown in Figure 12. 

 

Figure 11. A fuzzy subgraph H of �9. 
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Figure 12. The underlying crisp graph H* of H. 

By deletion contraction algorithm, we obtain, 

�(�∗, P	 � P�P Z 1	�P Z 2	[ 

Hence, 

�R
S��9, P	 � P�P Z 1	�P Z 2	[                 (15) 

Result and Discussion 

Consider the SFCP of � in (14), and using Definition 23, 

we get, QR
S��	 � 4. 

This result shows that there is a minimum of 4 traffic light 

phases are needed to control the traffic flow in Figure 8. With 

these 4 phases, the traffic flows at the intersection being 

smooth and safe. 

Analogously, consider the SFCP of �9 in (15), and using 

Definition 23, 

we obtain, QR
S��9	 � 3. 

This result shows that there is a minimum of 3 traffic light 

phases are needed to control the traffic flow in Figure 8. For 

instance, in phase 1, flow 1 can proceed, in phase 2, flow 3 

can proceed and in phase 3, both flows 2 and 4 can go 

simultaneously at the intersection without making any 

conflict, however, the flows 2 and 4 have a conflicting 

movement originally. 

In model �, the possibility of an accident occurs between 

each pair of conflict flows that are moving at the intersection 

is significant since all the flows are grouped into independent 

phases. But, in model �9, the possibility of accident occurs 

between conflict flows 2 and 4 are insignificant (i.e. 

��2,4	 � q	 since they are grouped in the same phase. 

Therefore, the fuzzy graph model is very helpful and 

flexible for describing and handling the uncertain 

information in traffic flow problems and SFCP is a powerful 

mathematical tool for optimizing the traffic light phases at 

road intersections. 

5.2. Application for Obtaining the Possible Number of 

Traffic Light Patterns 

Most of the time, the traffic light pattern which we are 

going to plan at road intersection might not be appropriate, 

efficient and reduce the vehicle waiting time as compared 

with each other. Therefore, choosing an efficient and 

appropriate traffic light flow pattern with less waiting time is 

a major issue in traffic light control and management. 

In this subsection, we apply SFCP to obtain the possible 

number of traffic light flow patterns with the optimized phases. 

In Example 6, for the model � in Figure 9, we have  

�R
S��, P	 � P�P Z 1	�P Z 2	�P Z 3	 

And 

QR
S��	 � 4. 

Therefore, �R
S r�, QR

S��	s � 24. 
Here, the result shows that there are 24 possible traffic 

light flow patterns with 4 phases. 

Similarly, for the model �9in Figure 10, we have 

�R
S��9, P	 � P�P Z 1	�P Z 2	[ 

And 

QR
S��9	 � 3. 

Therefore, we obtain 

�R
S r�9, QR

S��9	s � 6. 

Here, the result shows that there are 6 possible traffic light 

flow patterns with 3 phases. 

Note that all of these traffic light flow patterns are non-

conflicting combinations. The six possible traffic light flow 

patterns with 3 phases are depicted in Tables 1-6. 

Table 1. Traffic Light Flow Pattern 1. 

Phases Proceed Flows 

Phase 1 Only 1 

Phase 2 Only 3 

Phase 3 Only 2 & 4 

Table 2. Traffic Light Flow Pattern 2. 

Phases Proceed Flows 

Phase 1 Only 3 

Phase 2 Only 2 & 4 

Phase 3 Only 1 

Table 3. Traffic Light Flow Pattern 3. 

Phases Proceed Flows 

Phase 1 Only 1 

Phase 2 Only 2 & 4 

Phase 3 Only 3 

Table 4. Traffic Light Flow Pattern 4. 

Phases Proceed Flows 

Phase 1 Only 3 

Phase 2 Only 1 

Phase 3 Only 2 & 4 

Table 5. Traffic Light Flow Pattern 5. 

Phases Proceed Flows 

Phase 1 Only 2 & 4 

Phase 2 Only 1 

Phase 3 Only 3 
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Table 6. Traffic Light Flow Pattern 6. 

Phases Proceed Flows 

Phase 1 Only 2 & 4 

Phase 2 Only 3 

Phase 3 Only 1 

Computing the SFCP of the fuzzy graph at the minimum 

number of phases gives the possible number of traffic light 

patterns for the given traffic flow problem. Sometimes all the 

possible patterns which we have obtained are not equally 

appropriate and efficient. If this is the case, the SFCP is very 

helpful to choose the most appropriate and efficient patterns 

with reduced vehicle waiting times. 

6. Conclusion 

In this paper, we have introduced the concept of the strong 

fuzzy chromatic polynomial of fuzzy graphs and we have 

defined SFCP of fuzzy graph based on the strong coloring of 

a fuzzy graph. We have established the necessary and 

sufficient condition for SFCP of the fuzzy graph to be the 

chromatic polynomial of its underlying crisp graph. 

Furthermore, we have studied the SFCP of strong fuzzy 

graphs, complete fuzzy graphs, fuzzy cycles, and fuzzy trees. 

Also, we have given relations between SFCP and fuzzy 

chromatic polynomial of strong fuzzy graphs, complete fuzzy 

graphs, and fuzzy cycles. Finally, applications of SFCP 

theory to traffic flow problems are offered to demonstrate the 

applicability of the proposed work. In the future, we will 

develop a SFCP algorithm to solve strong coloring problems. 

 

References 

[1] Zadeh, L. A, Fuzzy sets. Inf. Control, vol. 8, No. 3, 1965, pp. 
338-353. 

[2] Rosenfeld, A, Fuzzy graphs, Fuzzy Sets, and Their 
Applications; Zadeh, L. A, Fu, K. S., Shimura, M., Eds.; 
Academic Press: New York, NY, USA, 1975; pp. 77-95. 

[3] Bhutani, K, R., On automorphisms of fuzzy Graphs. Pattern 
Recognit. Lett. vol. 9, No. 3, 1989, pp. 159-162. 

[4] Mordeson, J. N., and Nair, P. S. Cycles and cocycles of fuzzy 
graphs. Inf. Sci. vol. 90, 1996, pp. 39-49. 

[5] Sunitha, M. S., and Vijayakumar, A. A., Characterization of 
fuzzy trees. Inf. Sci. vol. 113, 1999, pp. 293-300. 

[6] Bhutani, K. R. and Rosenfeld, A., Strong arcs in fuzzy graphs. 
Inf. Sci. vol. 152, 2003, pp. 319- 322. 

[7] Mathew, S. and Sunitha, M. S. Types of arcsin a fuzzy graph. 
Inf. Sci. vol. 179, No. 11, 2009, pp. 1760-1768. 

[8] Mathew, S. and Sunitha, M. S. Strongest strong cycles and 
theta fuzzy graphs. IEEE Trans. Fuzzy Syst. vol. 21, No. 6, 
2013, pp. 1096-1104. 

[9] Mordeson, J. N.; Mathew, S. Advanced topics in fuzzy graph 
theory. Springer Nature: Gewerbestrasse 11, 6330 Cham, 
Switzerland, pp. 15-54, 2019. 

[10] Talebi, A. A. Cayley fuzzy graphs on the fuzzy groups. 
Comput. Appl. Math. vol. 37, No. 4, 2018, pp. 4611-4632. 

[11] Dhanyamol, M. V. On certain transit functions in fuzzy graphs. 
Int. J. Uncertainty Fuzziness Knowl. -Based Syst. Vol. 25, No. 
6, 2017, pp. 917-928. 

[12] Tom, M. and Sunitha, M. S. Strong sum distance in fuzzy 
graphs. SpringerPlus vol. 4, No. 214, 2015, pp. 1-14. 

[13] Mathew, S., Yang, H. L., and Mathew, J. K. Saturation in 
fuzzy graphs. New Math. Nat. Comput. Vol. 14, No. 1, 2018, 
pp. 113-128. 

[14] Harinath, P. and Lavanya, S., Fuzzy graph Structures. Int. J. 
Appl. Eng. Res. vol. 10, 2015, pp. 70–74. 

[15] Sitara, M., Akram, M., and Bhatti, M. Y., Fuzzy graph 
structures with application, Mathematics, vol. 7, No. 1, 2019, 
pp. 63. 

[16] Akram, M. and Sitara, M., Certain fuzzy graph structures, J. 
Appl. Math. Comput., vol. 61, 2019, pp. 25-56. 

[17] Akram, M., Bipolar fuzzy graphs, Inf. Sci. vol. 181, No. 24, 
pp. 5548-5564, 2011. 

[18] Akram, M. m-polar fuzzy graphs: Theory, Methods & 
Applications. Springer Nature: Gewerbestrasse 11, 633, Cham, 
Switzerland, pp. 7-112, 2019 

[19] Verma, R., Merigo, J. M. and Sahni, M., Pythagorean fuzzy 
graphs: some results, arXiv: 1806. 06721v1. 

[20] Ashraf, S., Naz, S., and Kerre, E. E., Dombi fuzzy graphs. 
Fuzzy Inf. Eng. vol. 10, 2018, pp. 58–79. 

[21] Akram, M., Dar, J. M., and Naz, S., Pythagorean Dombi fuzzy 
graphs. Complex Intell. Syst. 2019, pp. 1-26. 

[22] Zuo, C., Pal, A., and Dey, A., New concepts of picture fuzzy 
graphs with application. Mathematics, vol. 7, No. 5, 2019, pp. 
470, 

[23] Akram, M. and Waseem, N., Novel applications of bipolar 
fuzzy graphs to decision-making problems. J. Appl. Math. 
Comput. vol. 56, 2018, pp. 73-91. 

[24] Naz, S., Ashraf, S., and Akram, M., A novel approach to 
decision making with Pythagorean fuzzy information, 
Mathematics, vol. 6, No. 6, 2018, pp. 95. 

[25] Akram, M. and Habib, A., Specific types of Pythagorean 
fuzzy graphs and application to decision making. Math. 
Comput. Appl., vol. 23, No. 3, 2018, pp. 42. 

[26] Mordeson, J. N.; Mathew, S.; Malik, D. S. Fuzzy graph theory 
with applications to human trafficking. Springer International 
Publishing: Gewerbestrasse 11, 6330 Cham, Switzerland, pp. 
181-107, 2018. 

[27] Binu, M., Mathew, S. and Mordeson, J. N., Connectivity index 
of a fuzzy graph and its application to human trafficking. 
Fuzzy sets Syst. vol. 360, 2019, pp. 117-136. 

[28] Binu, M., Mathew, S., and Mordeson, J. N., Wiener index of a 
fuzzy graph and application to illegal immigration networks. 
Fuzzy Sets Syst. In Press. 2019. 

[29] Muñoz, S., Ortuño, M. T., Ramírez, J. and Yáñez, J., Coloring 
fuzzy graphs. Omega, vol. 33, No. 3, 2005, pp. 211–221. 



 Pure and Applied Mathematics Journal 2020; 9(1): 16-25 25 

 

[30] Eslahchi, C. and Onagh, B. N., Vertex strength of fuzzy 
graphs. Int. J. Math. Math. Sci. vol. 2006 (Article ID 43614): 
9, 2006. 

[31] Kishore, A. and Sunitha, M. S., Chromatic number of fuzzy 
graphs. Ann. Fuzzy Math. Inform. vol. 7, No. 4, 2014, pp. 543-
551, 

[32] Samanta, S., Pramanik, T. and Pal, M., Fuzzy coloring of 
fuzzy graphs Afr. Mat. vol. 27, 2016, 2016, pp. 37-50. 

[33] Mahapatra, T. and Pal, M., Fuzzy colouring of m-polar fuzzy 
graph and its application. J. Intell. Fuzzy Syst. vol. 35, 2018, 
pp. 6379-6391. 

[34] Kishore, A. and Sunitha, M. S., Strong chromatic number of 
fuzzy graphs, Ann. Pure Appl. Math. vol. 7, 2014, pp. 52-60. 

[35] Rosyida, I., Widodo, Indrani, Ch. R., Indriati, D., and 
Nurhaida. Fuzzy chromatic number of union of fuzzy graphs: 

An algorithm, properties, and its application Fuzzy sets Syst. 
in Press, 2019. 

[36] Mamo, A. A. and Srinivasa Rao, R. V. N., Fuzzy chromatic 
polynomial of fuzzy graphs with crisp and fuzzy vertices 
using α-cuts. Advances in Fuzzy Systems, vol. 2019, Article ID 
5213020, 11 pages. 

[37] Mordeson, J. N. and Nair, P. S., Fuzzy Graphs and Fuzzy 
Hypergraphs; Springer: Heidelberg, Germany, pp. 19-39, 
2000. 

[38] Mathew, S., Mordeson, J. N. and Malik, D. S., Fuzzy graph 
Theory, Springer International Publishing: Gewerbestrasse 11, 
6330 Cham, Switzerland, pp. 13-57, 2018. 

[39] Nagoorgani, A., Isomorphism properties on strong fuzzy 
graphs. Int. J. Algorithm Comput. Math. vol. 2, No. 1, pp. 39-
47, 2009. 

 


